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1 ABSTRACT   
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Dniepropetrovsk, Ukraine 

Free transverse waves in Timoshenko beam resting on Winkler 
foundation are studied. Dispersion curves are derived and analyzed in 
generalized dimensionless variables and parameters. Special attention 
is paid to clearing up the physical sense of the second spectrum of  
Timoshenko beam. 

 
 

INTRODUCTION 
There are two main reasons for studying dynamics of Timoshenko beam (TB, Timoshenko [1, 

2]). From theoretical point of view, the Timoshenko model has certain advantages over the classical 
Euler-Bernoulli (E-B) model. It is known that E-B model has non-wave character (according to E-B 
dynamic equation, a perturbation propagates along the beam with infinite large velocity, see, e.g., 
Uflyand [3]. The Timoshenko model results in an equation of wave character. 

From practical viewpoint, Timoshenko beam model, especially in case of elastic foundation, is 
of great interest in view of the development of the high-velocity transport.  The action of moving 
loads often gives rise to localized stress-strain states for which shear deformability should be taken 
into account.  

Our interest to dynamics of Timoshenko beam was caused by the following particular problem. 
It is known that in the TB for each wave number there exist two natural frequencies, and so two 
spectra of oscillations can be separated. During last decades discussion continued about the meaning 
of the second spectrum (see, e. g., [4-9] and for review - Stephen [9]), and many investigators adhere 
to opinion that “the second spectrum predictions of TB theory should be disregarded” [9]. 

In this paper an analysis of free transverse waves in TB on Winkler foundation is carried out. 
The use of dimensionless variables and parameters (Manevich А. [10] ) make it possible to draw 
general relations and conclusions. One of the main goals of this paper is to show that when we 
consider the TB on elastic foundation we obtain new convincing proofs of necessity and validity of 
the second branch of the spectrum. 
 
1. GOVERNING EQUATIONS 

Equations of motion for TB on the Winkler foundation are derived using known hypotheses. 
Deformations of the beam are described by two independent functions – the angle of the cross section 
rotation ψ   and the shear angle γ  (at the neutral axis). The total slope of the bent axis is  

y
x

ψ γ∂
= +

∂
                                                                 (1) 

where ( , )y x t  is the transverse displacement. The longitudinal displacement of a point on distance z  
from the neutral axis and the longitudinal deformations are  expressed via angle ψ :  u zψ= − , 

x z xε ψ= − ∂ ∂ . 
The bending moment and the transverse shear force in the cross section are specified by known 

expressions: 
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τ ψ∂ ′ ′= = − ∂ 
                                       (2) 

where k′  is the coefficient which depends upon the cross section shape (see, e.g., [2]), A  and J  are 
the cross section area and the moment of inertia, E and G are moduli of elasticity in tension and shear, 
respectively. 

Equations of the force balance for a beam loaded by a transverse load 0 ( , )q x t  and resting on 
the elastic foundation with stiffness factor 0w  are: 

 
2

0 02 ( , ) 0Q yA q x t w y
x t

ρ∂ ∂
− + − =

∂ ∂
,       

2

2 0MJ Q
t x
ψρ ∂ ∂

− + − =
∂ ∂

                        (3) 

  
These equations with account of the above relations result in two differential equations of 

motion in y  and ψ : 
2

0 02 ( , ) 0y yk GA A q x t w y
x x t

ψ ρ∂ ∂ ∂ ′ − − + − = ∂ ∂ ∂ 
                              (4) 

3 3 2

0 03 2 2 ( , ) 0yEJ J A q x t w y
x x t t
ψ ψρ ρ∂ ∂ ∂

− + − + =
∂ ∂ ∂ ∂

                            (5) 

 
Excluding the angle ψ  we obtain the single equation with respect to the displacement ( , )y x t : 
 

4 4 2 4 2 2 2

04 2 2 4 2 2 2

2 2

02 2

1 1

1

y E y J y y J EJEJ J A w y
x k G x t k G t t k GA t k GA x

J EJ q
k GA t k GA x

ρ ρρ ρ

ρ

 ∂ ∂ ∂ ∂ ∂ ∂ − + + + + + − =  ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂

= + − ′ ′∂ ∂ 

      (6) 

 
For the free oscillation problem the right hand side in (6) is equal to zero. The boundary 

conditions for the set (4), (5) in variables y  and ψ  can be derived utilizing the Hamilton’s principle. 
Let us introduce dimensionless variables and parameters (Manevich A. [10]): 
  

0

x
r

ξ = ,  
0

yY
r

=  ,  
0

c t
r

τ =  , 2 Ec
ρ

= ,  2
0

Jr
A

=  E
k G

χ =
′

,  0 0q rq
E A

= , 
2

0 0w rw
E A

=          (7) 

 
Here c  is the sound velocity in the beam material, 0r  is the cross section radius of gyration, χ  

is the shear deformability parameter, w  is the foundation stiffness parameter. Note that for classical 
Euler-Bernoulli and Rayleigh models 0χ = , that corresponds to infinitely large shear stiffness. 

In variables (7) equations (4), (5) take the form 

2

2 ( , ) 0Y Y q wYψ χ χ ξ τ χ
ξ ξ τ
 ∂ ∂ ∂

− − + − = ∂ ∂ ∂ 
                                 (8)   

3 3 2

3 2 2 ( , ) 0Y q wYψ ψ ξ τ
ξ ξ τ τ

∂ ∂ ∂
− + − + =

∂ ∂ ∂ ∂
                                     (9) 

 
and equation (6)  transforms into 

 

. ( ) ( )
4 4 4 2 2 2

4 2 2 4 2 2 21 1Y Y Y Y q wYχ χ χ χ
ξ ξ τ τ τ τ ξ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + + = + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

              (10) 
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This equation includes only two generalized parameters χ  и w , characterizing the shear 
deformability and the foundation stiffness. From (8)-(10) one can obtain equations for particular cases 
of free waves and oscillations ( 0q = ); for beam without elastic foundation ( 0w = , this case on the 
base of the dimensionless equations was considered in [10]). If 0χ =  one obtains dimensionless 
equations for the Rayleigh model, which differs from the classical Euler-Bernoulli model (E-B) with 
accounting the rotatory inertia of beam (for the E-B beam on the Winkler foundation the second term 
in left hand side of (10) vanishes). 

 The obtained equations are apparently preferable in comparison with often used dimensionless 
equations with several parameters. 

The angle ψ  can be expressed via Y using equation (9). For the derivative ξψ  one has 
relationship 

2 22

2 2 2 ( , )Y wY qξ ξψ ψ
ξ τ

τ τ ξ
∂ ∂∂

+ = − +
∂ ∂ ∂

                                      (11) 

 The shear angle  y Y
x

γ ψ ψ
ξ

∂ ∂
= − = −
∂ ∂

 and its derivative ξγ  is expressed via dimensionless 

variables  Y  and  ξψ : 

2

2

Y
ξ ξ

γγ ψ
ξ ξ
∂ ∂

≡ = −
∂ ∂

                                                     (12) 

 

2. SOLUTION FOR FREE WAVES IN INFINITELY LONG BEAM 
 

Here we consider only free waves in infinitely long beam ( 0q = ), which are described by 
equation  

( )
4 4 4 2 2 2

4 2 2 4 2 2 21 1 0Y Y Y Y w Yχ χ χ χ
ξ ξ τ τ τ τ ξ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − = ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

               (13) 

A solution is seeking in the form of harmonic waves 

( )
0( , ) i kY Y e ξ ωτξ τ −=                                                     (14) 

Substitution of (14) into (13) gives the frequency equation 
 

( ) ( )4 2 2 2 41 1 1 0k w w k kχω ω χ χ χ − + + + + + + =                                  (15) 

The roots are: 

( )2 2
1,2

1 1 1
2

k w Dω χ χ
χ
 = + + +                                          (16) 

where 

( ) ( )22 2 41 ( 1) 4 (1 )D k w w k kχ χ χ χ= + + + − + +                           (17) 

It can be readily seen that the both roots of equation (16) are real and positive. These two 
eigenvalues 1ω  and 2ω  for a given wave number k  determine two phase velocities for each k :  

,1,2 1,2фv kω= . The existence of two branches, or two spectra, is a principal distinction of the 
Timoshenko model from the E-B and Rayleigh models, which was revealed for beam without 
foundation in early papers ([3] and others).  

Let us find relations between amplitudes of the transverse deflections Y and amplitudes of 
angles ξψ  and  ξγ  for each the branch. Assuming these quantities in view of (11), (12) in the form 
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( )

0( , ) ji k
j jY Y e ξ ω τξ τ −= , ( )

, ,0( , ) ji k
j j e ξ ω τ

ξ ξψ ξ τ ψ −= ,  ( )
, ,0( , ) ji k
j j e ξ ω τ

ξ ξγ ξ τ γ −=  (j=1,2)   (18)      
 

and substituting into (11) with 0q =  and (12), one obtains 

2

,0 02 2
j

j
j

w
Y

kξ

ω
ψ

ω
−

=
−

,    
4 2 2 2

,0 02 2
j j

j
j

k k w
Y

kξ

ω ω
γ

ω
− − +

=
−

    (j=1,2)                  (19) 

The following identity follows from the frequency equation (15): 

( )( )4 2 2 2 2 2 2
j j j jk k w k wω ω χ ω ω− − + = − −     (j=1,2) 

Then the second relation (19)  (with account of the first one) yields 
 

( )2 2 2
,0 0 ,0( )j j j j jw Y kξ ξγ χ ω χ ω ψ= − − = − −      (j=1,2)                        (20) 

 

3. ANALYSIS OF THE SOLUTION  

Consider first the simplest limit case of long waves 0k → . Putting in (16) 0k = , one has 

2
1,2

1( 0) 1 1
2

k w wω χ χ
χ

= =  + −                                               (21) 

This yields  

for 1wχ < :     2
1 ( 0)k wω = = ,  2

2
1( 0)kω
χ

= =                             (22,a) 

for 1wχ > :      2
1

1( 0)kω
χ

= = ,  2
2 ( 0)k wω = =                               (22,б) 

 

At changing stiffness of the elastic foundation to the beam shear stiffness ratio the first and the 
second spectrum “change” with their limit points (or with analytical dependencies of these 
stiffness’s). The first branch in limit 0k →  is determined by the smaller of these stiffness’s, the 
second one – by the larger of the stiffness’s. The case 1wχ <  can be named “weak foundation”, and 

1wχ >  – «strong foundation». 
If k  is small (but not equal to 0), then due to continuous analytical dependence (16) value of 

2
1ω  is close to w  for weak foundation ( 1/w χ< ), and to 1/ χ  for strong one ( 1/w χ> ). For 2

2ω  
the picture will be opposite.  

In Fig. 1 dispersion curves for frequency are presented for 0.1w =  in two cases: 3χ =  (а) and 
30χ = (б). Two branches for TB are constructed (bold curves), and for comparison curves for E-B 

model (curves 1) and Rayleigh model (curves 2) are given. Portions of the curves for relatively small 
k  are shown on a large scale in Fig, 2, a.  
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a                                                         b 

Fig. 1 Dispersion curves for frequency kω −  for beam on elastic foundation 0,1w =  
in cases 3χ =  (а) and 30χ = (б). Two branches for TB (bold curves), 

curves for E-B (1) and Rayleigh models (2) 
 

In Fig. 1,a (the case of “weak” foundation) the first branch for TB (curve 3) has the same 
asymptotics for small k , as do the E-B and Rayleigh models (curves 1, 2), and these curves 
practically merge for 0.15k < . But the second branch (curve 4) at large k  is close to the Rayleigh 
model. Note that the dispersion curves differ from those for case of beam without foundation ( 0w = ) 
only with “shifting” their left parts (curves 1, 2, 3 originate from one of points (22,a) or (22, b), not 
from zero point). 
 

  
                               а                                                            б 

Fig. 2. Dispersion curves for frequency kω −  (а) and phase velocity v kφ −  (б) for beam 
on elastic foundation, 0.1w = , 30χ = , on a large scale. Two branches for TB (curves 3, 4), 

curves for E-B (1) and Rayleigh models (2) 
 
But for “strong” foundation we see another picture (Fig. 1,b, Fig, 2, a). Both the branches of 

TB (curves 3, 4) consist of two portions. The left portion of the first branch is a continuation of the 
right part of the second branch, and inversely. In other words, both branches “have changed” with 
their portions. This peculiarity is underlined by the fact that curves for E-B and Rayleigh models (1, 
2) now approach the second branch of TB model at 0k →  (not the first branch, as they do for 
“weak” foundation). 

In Fig. 2, b, dispersion curves for phase velocity v kφ −  are shown for moderately small k  
values, which demonstrate the same behavior as Fig. 2, a. We also see a twisting point on curve 3 
(first branch for TB), and curves 1, 2, which were close to the curve 3, begin for small k  to approach 
curve 4 – the second TB branch. 

For elucidating the physical meaning of the second spectrum of TB let us now note that  for 
beam without foundation one has 2 2

1 0kω − <  (j=1, upper sign) and 2 2
2 0kω − > , j=2, lower sign (it 
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can be proved using (16), (17)). Then it follows from (20) that for the first branch oscillations of ξγ  

(dimensionless curvature of the beam due to shear) occur in phase with oscillations of ξψ  
(dimensionless curvature due to bending), and that for the second branch these oscillations occur in 
anti-phase.  

The similar statements are also valid for the angles of shear γ  and bending ψ . Thus, the first 
spectrum of natural frequencies for beam without foundation relates to wave (oscillation) modes for 
which the angle of rotation of the cross section and of shear angle oscillate in phase; the second 
spectrum relates to waves for which these angles oscillate in anti-phase. 

It can be also proved that the similar statement is valid for the beam on elastic foundation in the 
case of “weak foundation”. 

Eigenvector 0 0( , )ξ ξψ γ  (and ( 0 0,ψ γ )) in limit 0k →  is determined by (22). For the first 

branch this vector is ( 0 0,ψ γ )= (1, wχ− )  in the case 1/w χ< , and 0 0( , )ξ ξψ γ = (1, 1)−  in the case 

1/w χ> . For the second branch limit eigenvector is ( 0 0,ψ γ )= (1, 1)−  at 1/w χ<  and ( 0 0,ψ γ )=(1, 
wχ− ) at 1/w χ> . We see again that at transition of w  value through  1/ χ  the eigenvectors 

“change” occurs.  This demonstrates the equivalence of two branches for the TB and refutes statement 
that the second spectrum of TB is “unphysical”. 

 
CONCLUSIONS 

 
The presented analysis of free transverse waves in Timoshenko beam on the Winkler 

foundation based on dimensionless equations with two generalized parameters allows to draw 
principal conclusions concerning dynamics of TB. The obtained solution, in particular, brings to light 
the meaning of the second spectrum of TB. It is shown that both the spectra are equivalent in certain 
sense that refutes the view on the second branch as “unphysical” one.  
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